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 A stochastic model for daily clearness index sequence in Can Tho city has 
been proposed. This model based on a pair of stochastic processes, being 
called the state process and the observation process. The random dynam-
ic of meteorological regimes in random medium was modellized by the 
state process, a hidden homogeneous Markov chain. The observation 
process, which represents the daily clearness index sequences, was 
formed by a real value function whose values are corrupted by Gaussian 
noise. Parameters of the model were estimated from the real data using 
Maximum Likelihood estimation via Expectation Maximization algorithm. 
The simulated data were used to estimate the experimental distribution of 
daily clearness index sequences. 
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1 INTRODUCTION 

The predicting short-term average energy delivery 
of solar collectors can be based on the precise 
knowledge of statistic (or physique) models of the 
global solar radiation Gt or the frequency distribu-
tion of its dimensionless form, the clearness index: 
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where It is the extraterrestrial solar radiation. 

For the long-term predictions, the clearness index 
are often considered over a given time interval t : 
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The usual used integration periods are the day and 
the hour, termed daily clearness index and hourly 
clearness index, respectively. 

Sahin and Sen (2008) stated that daily clearness 
index denoted as Kh, based on the well known 
Angstrom-type correlation between Kh and sun-
shine duration, some authors applied the regression 
technique to develop the linear or non-linear statis-
tic models for Kh which can be used to estimate the 
daily, monthly or annual global radiation from 
simple measurements of sunshine duration. All 
these models are essentially the outcome of consid-
ering deterministic components of solar radiation 
sequences; stochastic characteristics are considered 
less powerful. 

In order to understand a better model of the behav-
iour of solar radiation and clearness, which is also 
ruled by the stochastic parameters (frequency and 
height of the clouds and their optical properties, 
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atmospheric aerosols, ground albedo, water vapour 
and atmospheric turbidity), we propose a new ap-
proach for modeling the Clearness Index Sequenc-
es (CIS). That is a stochastic model of Hidden 
Markov Model (HMM) type, which can represent 
the CIS under the random effects of meteorological 
events. Then, a simulated data application which 
will be considered at our model, which is estimat-
ing experimental distribution of CIS. This is very 
useful in predicting long-term average energy de-
livery of solar collectors. 

For the problem of parameter estimation, consider-
ing the relation between complete data and incom-
plete data, the Expectation Maximization (EM) 
algorithm will be applied, where the stationary and 
converging properties were evaluated by (Dembo 
and Zeitouni, 1986; Dempster et al., 1977). The 
used equations of filter processes for updating  

parameters are referred to the results in (Elliott et 
al., 2010). 

In the numerical application, model parameters 
were estimated from daily CISs having the same 
monthly characteristic and its simulated data were 
used to estimate the experimental probability den-
sity function (PDF) of Kh for this characteristic 
month.  

This paper is organized as follows. In section 2, we 
present the establishment of the proposed model 
for CIS. We describe the EM algorithm and the 
estimating parameters on real data in Section 3. 
The applying simulated data for estimating exper-
imental PDF of daily CISs is presented in Section 
4. Finally, in Section 5, we conclude with some 
notes. 

0 1

N = 2

0 1

N = 5

 
Fig. 1: Histogram of the daily CIS during June 2014 in Can Tho city 

2 THE MODEL 

The empirical distribution of a daily CIS during a 
period suggests that the daily CIS distribution 
could be a Gaussian mixture (for instance, see the 
histogram of daily CIS  during June 2014 in Can 
Tho city is shown in the Figure 1), each Gaussian 
component corresponding, may be, to some specif-
ic meteorological regime. This has lead to model-
ize the dynamic of the sequence by a discrete-time 
HMM, where: 

(i) the unobserved state process is a Markov chain 
representing the dynamic of regimes, each daily 
index belonging to a regime, several daily index 
belonging eventually to  a same regime. 

(ii) the observation process is such that, given (or 
within) regime i, the various observed daily clear-

ness index are outcomes of a Gaussian distribution 

whose mean µi and standard deviation 
i

 depend 

on regime , 1, 2, ,i i N  . 

Actually, each regime corresponds to a Gaussian 
component of the suggested Gaussian mixture, and 
in terms of probabilistic classification, each regime 
corresponds to a (Gaussian) class. The advantage 
of considering a HMM is that it provides a para-
metric description of the random dynamic of the 
regimes, which is not the case in a classification 
setting. 

2.1 State process  

We assume that there are 1N    meteorological 

regimes, regime i being represented by 
i

e , the unit 
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column vector of Rn with 1 at position 
i, i 1, 2,..., N . 

The random dynamic of meteorological regimes 
will be modellized by an unobserved or hidden 
homogeneous Markov chain Xh h0,1,2,...

, called 

the state process, with state space 

 1 2, , , Ne e eS   and probability transition ma-

trix A  aji  , where 

 1 | , , 1, 2, , .ji h j h ia P X e X e i j N    
 

Note that 1 , 1, 2, , .ii ji
j i

a a i N


      

We assume that the distribution of X0
 is  0  

known.  

2.2 Observation process and model parameters 

The random values of a daily CIS (
hK ) are mod-

elled by the so-called observation process as fol-
lows. In regime i , that is when the Markov chain is 

in state ie  ( 1, 2, , )i N  , the daily clearness 

index hK  will be considered as an outcome of a 

Gaussian distribution  2,i i N  depending on 

regime i . In other words: 

      , 1, 2,
h i h ih i i hX e X eK w h    1 1 

 

where hw  are  independent random variables hav-

ing  0,1N  and ,i i   are estimated parameters.
 

The model proposed for daily CIS under the ran-
dom effects of meteorological events will be the 
HMM with the state process (Xh) and the observa-
tion process (Kh)  defined by 

     
1 1

, 1, 2,
h i h i

N N

h h i i hX e X e
i i

K K w h  
 

    1 1 
 

The prime symbol denotes transpose, let  

 1 2, , , ',N    
  

 1 2, , , ',N      
we have equivalently

 
, , , 1, 2,h h h hK X X w h    ,  (3) 

where ,   denoting the inner product. 

The parameter set of the proposed model is 

 1 2 1 2, 1 ; , , , ; , , , .ji N Na i j N           
 

2.3 Some notations 

In order to estimate parameters of the model, we 
represent some necessary notions listed below: 

(i) Number of jumps of the state process from ie  to 

je : 

1
1

, , .
h

ij
h l i l j

l

J X e X e



 

(ii) Occupation time of the state process in state 

ie : 

1
1

,
h

i
h l i

l

O X e


  . 

(iii) Level sums of the observation process in state 

ie : 

    1
1

,
h

i
h l l i

l

T g g K X e


  . 

(iv) Filtration of incomplete data: 

 1 2, , ,h hK K K K . 

(v) Filtration of complete data: 

 0 1 2 1 2, , , , , , , ,h h hX X X X K K K  G . 

(vi) With , ( )ij i i
h h h hH J O or T g  , the normalized 

filter of proces 
hH : 

  ( | )h h hH E H  K . 

Where  U  denotes the  -algebra generated 

by the set U and  l lg K K or   2
l lg K K . 

3 PARAMETER ESTIMATION 

In this Section we represent the results of updating 
ML estimates for parameters using EM algorithm. 

3.1 EM Algorithm 

We wish to determine a new parameter set ̂ , 
which maximizes the complete data log-likelihood 
function via EM algorithm. 

The complete data log-likelihood function is de-
fined by: 
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 ˆˆ( , ) log |h hQ E 
    K ,   

 (4) 

where 
ˆ ˆ |h h

dP

dP
 



  G   and P  denote the proba-

bility measure depending on the parameter set  .  

Starting from an initial value (0)̂ , iterations of 
EM algorithm will generate a sequence 

 ( )ˆ , 1p p   of estimates for  . Each iteration 

consists of the two following steps: 

E-Step (Expectation Step): Set and 
( )ˆ p  compute 

 ( )

( )

ˆ ˆ( )
ˆ

ˆ ˆ( , ) log |
p

p

p
h hQ E K 


    . 

M-Step (Maximization Step): Find 

 ( 1) ( )

ˆ
ˆ ˆ ˆarg max ,p pQ


  


 . 

We repeat from E-Step with p = p + 1, unless a 
stopping test is satisfied. The stationary and con-
verging properties of the EM algorithm had been 
evaluated by (Dembo and Zeitouni, 1986; Demp-
ster et al., 1977). 

3.2 Updating Parameter 

In the each iteration of EM algorithm, updating the 
transition probabilities 

jia  is as follows (Elliott et 

al., 2010): 

 
 

ˆ , 1 ,
ij
h

ji i
h

J
a i j N

O




        (5) 

where  ij
hJ  and  i

hO  are the normalized 

filters of the number of jumps and the occupation 
time, respectively. 

We now consider the update from   and   to ̂  

and ̂ , respectively. 

We have 

ˆ

1

ˆ,
,

ˆ,

,
ˆ,

,

,
h

h

l

K Xl l
X l

X l

K Xl l
X l

X l





















 
 
  
 
 
 

     (6) 

where     denotes  0,1N
 
density function. 

From (4) and (6), we get: 
2

1

ˆ,1 1ˆ( , ) log |
ˆ, 2 ,

h
l l

h
l l l

K X
Q E

X X


 

 

               
 K

 +  , hR  K , (7) 

where the function  , hR  K does not depend on 

̂ . 

E-Step: Set ( )ˆ p  and rewrite (7) as 

 ˆ ˆ, pQ    = 

 2

ˆ 2
1 1

,1 1
, log |

ˆ ˆ2

N h
l i

l i l i h
i l i i

X e
E X e K



  

      
   

  K

+  ˆ ,p
hR  K  

  = 

         2 2
2

1

1 1
ˆ ˆlog 2

ˆ ˆ2

N
i i i i
h h h i h h i h

i i i

O T K T K O     
 

       
  

      +  ˆ ,p
hR  K . 

M-Step: Let us find now 

 ( 1) ( )

ˆ
ˆ ˆ ˆarg max ,p pQ


  


 : 

Taking derivative of  ˆ ˆ, pQ    with respect to 

ˆ , 1, 2, ,i i N   , we obtain 

 ˆ ˆ,
ˆ

p

i

Q  




 =     2

1
ˆ2 2

ˆ2
i i

h h i h
i

T K O  


    
. 

Now  ˆ ˆ,
ˆ

p

i

Q  




 = 0 yields  

  
 

ˆ
i

h h

i i
h

T K

O





 .      (8) 

(i) Similarly, for 1, 2, ,i N  ,  ˆ ˆ,
ˆ

p

i

Q  




 = 0 

yields 

         2 2 21
ˆ ˆ ˆ2 2i i i

i h h i h h i hi
h

T K T K O
O

     


    
.

 (9) 
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Fig. 2: Global solar radiation and Daily CIS performed in 01/2014, Can Tho city 

Table 1: Daily CIS 
h

K  performed in January and June 2014, Can Tho city 

 Day 
hK  Day 

hK  Day 
hK  Day 

hK  Day 
hK  

 
 
 

January 

1 
2 
3 
4 
5 
6 

0.5469 
0.3801 
0.5563 
0.3858 
0.5118 
0.4058 

7 
8 
9 

10 
11 
12 

0.5977 
0.2651 
0.4016 
0.4932 
0.6631 
0.3904 

13 
14 
15 
16 
17 
18 

0.6559 
0.6298 
0.7304 
0.5841 
0.4861 
0.5834 

19 
20 
21 
22 
23 
24 

0.7118 
0.6655 
0.6250 
0.5992 
0.6092 
0.6281 

25 
26 
27 
28 
29 
30 
31 

0.6833 
0.6469 
0.6386 
0.5488 
0.6616 
0.6630 
0.5570 

 
 

June 

1 
2 
3 
4 
5 
6 

0.3878 
0.3115 
0.4515 
0.4185 
0.3154 
0.6309 

7 
8 
9 

10 
11 
12 

0.5937 
0.6693 
0.5029 
0.3569 
0.4009 
0.2884 

13 
14 
15 
16 
17 
18 

0.3805 
0.3184 
0.5155 
0.2228 
0.5317 
0.4341 

19 
20 
21 
22 
23 
24 

0.4777 
0.2499 
0.2270 
0.2934 
0.6827 
0.4017 

25 
26 
27 
28 
29 
30 

0.2100 
0.6296 
0.5306 
0.5299 
0.3788 
0.5681 

3.3 Experiments with real data 

Using (5), (8), and (9), the model parameters will 
be estimated from the observed data via the EM 
algorithm. The number of states being chosen after 
examining the data histograms and the Akaike in-
formation criterion (AIC) (Scott, 1992). We deal 
with data coming from a tropical area, but our 

method can also be tested on other types of cli-
mate. 

3.3.1 Real data 

Using standard formulas of the extraterrestrial ra-
diation reported by Liu. and Jordan (1960), we 
computed the daily CISs from the global solar ra-
diation measurements performed in the Can Tho 
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city (latitude 10°2′0″N, longitude 105°47′0″E), 
which is a tropical and monsoonal area with two 
seasons: rainy, from May to November; and dry, 
from December to April. Average annual humidity 
is 83% and temperature 27°C [9, 13]. 

Our numerical application were carried on the two 
typical months (see Table 1):  

(i) DATA0114 (Figure 2b): a daily CIS K observed 
in 01/2014, a month of the rainy. 

(ii) DATA0614 (Figure 7a): a daily CIS K ob-
served in 06/ 2014, a month of the dry. 

(iii) Observing the histograms and examining the 
AIC (selecting the model with the smallest AIC 
value) of these data (Figure 1 and Figure 3), we 
will apply the models with 2N   states. 

1 31
0

0.5

1
DATA0114

0 1

N = 2

0 1

N = 3

0 1

N = 4

1 2 3 4
-50

0

50

Number of states N

A
IC

d)c)

a) b)

e)

 
Fig. 3: Selecting the number of states by observing the histograms (Figure 3b, 3c, 3d) and examining 

the AIC (Figure 3e) of the DATA0114 (Figure 3a) 

3.3.2 Estimating model parameters from 
DATA0114 

With the number of states 2N  , the model is 
determined by the parameter set  , ,A   , 

where  1 2, '   ,  1 2, '    and the 

transition probability matrix: 

11 12

21 22

.
a a

A
a a

 
  
   

Initial parameters are given by: 

0.5 0.5
,

0.5 0.5
A

 
  
 

 

 0.7475, 0.5845 '  , 

 0.1144, 0.1144 '  . 
After 100 iterations of the EM algorithm, we obtain 
the following estimates: 

0.4803 0.3085
,

0.5197 0.6915
A

 
  
 

 

 0.6431, 0.5236 '  , 

 0.0421, 0.1194 '  . 

The graphs in Figure 4a, Figure 5a and Figure 6a 
show the evolution of these estimates. 
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Fig. 4: Estimation of transition probability matrix A: a) From DATA0114; b) From DATA0614 
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Fig. 5: Estimation of the vector  : a) From DATA0114; b) From DATA0614 
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Fig. 6: Estimation of the vector  : a) From DATA0114; b) From DATA0614

 



Can Tho University Journal of Science Vol 2 (2016) 90-99 

 97 

3.3.3 Estimating model parameters from 
DATA0614 

Using DATA0614, with the number of state 
2N  , model parameters are estimated from the 

following initial parameter set: 

0.2568 0.3389
,

0.7432 0.6611
A

 
  
 

 

 1, 2 '  ,  0.1, 0.2 '  . 

The obtained estimates after 100 iterations of the 
EM algorithm (evolutions of these estimates are 
showed in Figure 4b, Figure 5b and Figure 6b): 

0.7110 0.9961
,

0.2890 0.0039
A

 
  
 

 

 0.4870, 0.3176 '  , 

 0.1185, 0.0378 '  . 

4 APPLICATION 

This section presents an application using paths 
simulated by our models for improvement of the 
PDF of daily CISs. 

Estimating the PDF of daily CIS over a month or 
over a specific period can be of interest in deciding 
whether our model estimated over this period still 
works for a longer period or not. It can also be used 
for clustering daily CISs observed on various peri-
ods. 

 Indeed, using the model  with its parameter esti-
mated from a sample of daily CISs, of one-month-
length say, we can simulate a much larger n-sample 

of 
hK , say * * *

1 2, , , nK K K , over this period 

and get a smooth estimation of the PDF over this 
month. Doing the same with another month and 
getting another n-sample, a KS (Kolmogorov-

Smirnov) test can be performed to reject or not the 
hypothesis that both PDF are the same. If the hy-
pothesis is rejected (w.r.t. a p-value), we can reject 
the hypothesis that both models are the same. On 
the other hand, KS distance between two sequenc-
es, computed from the two n-samples, can be used 
for clustering CISs by performing some standard 
clustering methods. 

4.1 Kernel estimators 

The Gaussian kernel estimator of the density is the 

function f̂  defined as (Scott, 1992): 

*

1

1ˆ ( )
n

h

h

x K
f x

n 
 

 
  

 
 , 

where 0   is a bandwidth (a smoothing parame-
ter) and     denotes the  0,1N

 
density func-

tion kernel. 

This estimator is of course much smoother than the 
uniform kernel estimator (histogram estimation), 

that is the empirical PDF f̂ , defined as follows: 

divide [0, 1] interval (the range of hK ) into L sub-

intervals  1,l lx x  of equal length 
1

x
L

   with 

0 0x   and lx l x  , 1, 2, ,l L  , then 

1ˆ ( ) ln
f x

n x



	,	

where ln is the number of observed values in the 

interval  1,l lx x , 1, 2, ,l L  . 
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Fig. 7:  a) Daily CIS performed in 01/2014, Can Tho city (DATA0614);  

b) A simulated path for DATA0614 

4.2 Experiments 

From DATA0614, we have estimated the parame-
ters. We have generated 5000 simulated paths of 30 
values from the estimated model (for instance, a 
simulated path showed in Figure 7b). These simu-
lated paths have the same distribution with DA-
TA0614, evaluated by KS test (Joaquim, 2007). 
Then, from these 5000 30n    simulated values, 

we have estimated the PDF of hK  for June in Can 

Tho city (shown in Figure 8). Note that this is an 
estimation obtained from DATA0614 (daily CIS 

hK  performed in June 2014); if the model were 

estimated with more data, for example with adding 
up the data in 06/2015, 06/2013, 06/2012,  then 
the PDF estimation will be better. 
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Fig. 8:  PDF of  hK  in June ( Can Tho city): 

a)  0,1N kernel estimation; b) Histogram estimation 

PDF of hK  were obtained similarly in January from DATA0114 (see Figure 9). 
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Fig. 9: PDF of  hK  in January (Can Tho city): 

a) 
 
kernel estimation; b) Histogram estimation 

5 CONCLUSION 

Clearness index sequences under the random ef-
fects of meteorological events are modellized by 
the HMM-type, a modelling-type plays a promi-
nent role in a range of application areas. The pa-
rameters of model obtained from the ML estima-
tion method via the celebrated EM algorithm. The 
methodology was tested on real data.  

Using estimated parameters, the model will gener-
ate the simulated data having the same distribution 
characteristic of observation data, because it enjoys 
properties of EM algorithm used in the estimating 
technique. From this, if the model established from 
daily CISs observed in the months having the same 
distribution characteristic then we can use it to 
generate a large number of simulated paths having 
this monthly distribution characteristic. Using this 
large number of simulated values, the obtained 
estimates of experimental PDF of daily clearness 
index are very smoothing.  This will be very useful 
for predicting the short-term or long-term average 
energy delivery of solar systems.         
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